Added value of spectral computed tomography quantitative parameters for differentiating tuberculosis-associated fibrosing mediastinitis from endobronchial lung cancer: initial results

Clin Radiol. 2024 Mar 15:S0009-9260(24)00132-6. doi: 10.1016/j.crad.2024.02.010. Online ahead of print.

Abstract

Objective: The objective of this study was to explore the added value of spectral computed tomography (CT) parameters to conventional CT features for differentiating tuberculosis-associated fibrosing mediastinitis (TB-associated FM) from endobronchial lung cancer (EBLC).

Methods: Chest spectral CT enhancement images from 109 patients with atelectasis were analyzed retrospectively. These patients were divided into two distinct categories: the TB-associated FM group (n = 77) and the EBLC group (n = 32), based on bronchoscopy and/or pathological findings. The selection of spectrum parameters was optimized with the least absolute shrinkage and selection operator regression analysis. The relationship between the spectrum parameters and conventional parameters was explored using Pearson's correlation. Multivariate logistic regression analysis was used to build spectrum model. The spectrum parameters in the spectrum model were replaced with their corresponding conventional parameters to build the conventional model. Diagnostic performances were evaluated using receiver operating characteristic curve analyses.

Results: There was a moderate correlation between the parameters ㏒(L-AEFNIC) - ㏒(L-AEFC) (r= 0.419; p< 0.0001), ㏒(O-AEF40KeV) - ㏒(O-AEFC) (r= 0.475; p< 0.0001), [L-A-hydroxyapatite {HAP}(I)] - (L-U-CT) (r= 0.604; p< 0.0001), {arterial enhancement fraction (AEF) derived from normalized iodine concentration (NIC) of lymph node (L-AEFNIC), AEF derived from CT40KeV of bronchial obstruction (O-AEF40KeV), arterial-phase Hydroxyapatite (Iodine) concentration of lymph node [L-A-HAP(I)], AEF derived from conventional CT (AEFC), unenhanced CT value (U-CT)}. Spectrum model could improve diagnostic performances compared to conventional model (area under curve: 0.965 vs 0.916, p= 0.038).

Conclusion: There was a moderate correlation between spectrum parameters and conventional parameters. Integrating conventional CT features with spectrum parameters could further improve the ability in differentiating TB-associated FM from EBLC.