Transient Absorption Spectroscopy of Films: Impact of Refractive Index

J Phys Chem C Nanomater Interfaces. 2024 Apr 5;128(15):6167-6179. doi: 10.1021/acs.jpcc.4c00981. eCollection 2024 Apr 18.

Abstract

Transient absorption spectroscopy is a powerful technique to study the photoinduced phenomena in a wide range of states from solutions to solid film samples. It was designed and developed based on photoinduced absorption changes or that photoexcitation triggers a chain of reactions with intermediate states or reaction steps with presumably different absorption spectra. However, according to general electromagnetic theory, any change in the absorption properties of a medium is accompanied by a change in the refractive properties. Although this photoinduced change in refractive index has a negligible effect on solution measurements, it may significantly affect the measured response of thin films. In this Perspective paper, we examine why and how the measured responses of films differ from their expected "pure" absorption responses. The effect of photoinduced refractive index change can be concluded and studied by comparing the transmitted and reflected probe light responses. Another discussed aspect is the effect of light interference on thin films. Finally, new opportunities of monitoring the photocarrier migration in films and studying nontransparent samples using the reflected probe light response are discussed. Most of the examples provided in this article focus on studies involving perovskite, TiO2, and graphene-based films, but the general discussion and conclusions can be applicable to a wide range of semiconductor and thin metallic films.

Publication types

  • Review