A facile and smart strategy to enhance bone regeneration with efficient vitamin D3 delivery through sterosome technology

J Control Release. 2024 Apr 24:370:140-151. doi: 10.1016/j.jconrel.2024.04.033. Online ahead of print.

Abstract

The spontaneous healing of critical-sized bone defects is often limited, posing an increased risk of complications and suboptimal outcomes. Osteogenesis, a complex process central to bone formation, relies significantly on the pivotal role of osteoblasts. Despite the well-established osteogenic properties of vitamin D3 (VD3), its lipophilic nature confines administration to oral or muscle injection routes. Therefore, a strategic therapeutic approach involves designing a multifunctional carrier to enhance efficacy, potentially incorporating it into the delivery system. Here, we introduce an innovative sterosome-based delivery system, utilizing palmitic acid (PA) and VD3, aimed at promoting osteogenic differentiation and facilitating post-defect bone regeneration. The delivery system exhibited robust physical characteristics, including excellent stability, loading efficiency, sustained drug release and high cellular uptake efficiency. Furthermore, comprehensive investigations demonstrated outstanding biocompatibility and osteogenic potential in both 2D and 3D in vitro settings. A critical-sized calvarial defect model in mice recapitulated the notable osteogenic effects of the sterosomes in vivo. Collectively, our research proposes a clinically applicable strategy for bone healing, leveraging PA/VD3 sterosomes as an efficient carrier to deliver VD3 and enhance bone regenerative effects.

Keywords: Bone regeneration; Drug delivery; Osteogenesis; Sterosomes; Vitamin D(3).