Regulation of Enhancers by SUMOylation Through TFAP2C Binding and Recruitment of HDAC Complex to the Chromatin

Res Sq [Preprint]. 2024 Apr 2:rs.3.rs-4201913. doi: 10.21203/rs.3.rs-4201913/v1.

Abstract

Enhancers are fundamental to gene regulation. Post-translational modifications by the small ubiquitin-like modifiers (SUMO) modify chromatin regulation enzymes, including histone acetylases and deacetylases. However, it remains unclear whether SUMOylation regulates enhancer marks, acetylation at the 27th lysine residue of the histone H3 protein (H3K27Ac). To investigate whether SUMOylation regulates H3K27Ac, we performed genome-wide ChIP-seq analyses and discovered that knockdown (KD) of the SUMO activating enzyme catalytic subunit UBA2 reduced H3K27Ac at most enhancers. Bioinformatic analysis revealed that TFAP2C-binding sites are enriched in enhancers whose H3K27Ac was reduced by UBA2 KD. ChIP-seq analysis in combination with molecular biological methods showed that TFAP2C binding to enhancers increased upon UBA2 KD or inhibition of SUMOylation by a small molecule SUMOylation inhibitor. However, this is not due to the SUMOylation of TFAP2C itself. Proteomics analysis of TFAP2C interactome on the chromatin identified histone deacetylation (HDAC) and RNA splicing machineries that contain many SUMOylation targets. TFAP2C KD reduced HDAC1 binding to chromatin and increased H3K27Ac marks at enhancer regions, suggesting that TFAP2C is important in recruiting HDAC machinery. Taken together, our findings provide insights into the regulation of enhancer marks by SUMOylation and TFAP2C and suggest that SUMOylation of proteins in the HDAC machinery regulates their recruitments to enhancers.

Keywords: AP-2; H3K27Ac; RNA splicing; SUMO; SUMOylation; TFAP2C; enhancers; histone remodeling; spliceosome.

Publication types

  • Preprint