Ultrasonic processing: effects on the physicochemical and microbiological aspects of dairy products

Crit Rev Biotechnol. 2024 Apr 21:1-15. doi: 10.1080/07388551.2024.2332941. Online ahead of print.

Abstract

Dairy products that are contaminated by pathogenic microorganisms through unhygienic farm practices, improper transportation, and inadequate quality control can cause foodborne illness. Furthermore, inadequate storage conditions can increase the microflora of natural spoilage, leading to rapid deterioration. Ultrasound processing is a popular technology used to improve the quality of milk products using high-frequency sound waves. It can improve food safety and shelf life by modifying milk protein and fats without negatively affecting nutritional profile and sensory properties, such as taste, texture, and flavor. Ultrasound processing is effective in eliminating pathogenic microorganisms, such as Salmonella, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. However, the efficiency of processing is determined by the type of microorganism, pH, and temperature of the milk product, the frequency and intensity of the applied waves, as well as the sonication time. Ultrasound processing has been established to be a safe and environmentally friendly alternative to conventional heat-based processing technologies that lead to the degradation of milk quality. There are some disadvantages to using ultrasound processing, such as the initial high cost of setting it up, the production of free radicals, the deterioration of sensory properties, and the development of off-flavors with lengthened processing times. The aim of this review is to summarize current research in the field of ultrasound processing and discuss future directions.

Keywords: Nonthermal techniques; food quality preservation; food safety processing; milk and milk products; ultrasound processing.

Publication types

  • Review