Integrated anti-vascular and immune-chemotherapy for colorectal carcinoma using a pH-responsive polymeric delivery system

J Control Release. 2024 Apr 25:370:230-238. doi: 10.1016/j.jconrel.2024.04.028. Online ahead of print.

Abstract

Colorectal carcinoma (CRC) has become one of the most prevalent malignant tumors and exploring a potential therapeutic strategy with diminished drug-associated adverse effects to combat CRC is urgent. Herein, we designed a pH-responsive polymer to efficiently encapsulate a stimulator of interferon genes (STING) agonist (5,6- dimethylxanthenone-4-acetic acid, termed ASA404) and a common clinically used chemotherapeutic agent (1-hexylcarbamoyl-5-fluorouracil, termed HCFU). Investigations in vitro demonstrated that polymer encapsulation endowed the system with a pH-dependent disassembly behavior (pHt 6.37), which preferentially selected cancerous cells with a favorable dose reduction (dose reduction index (DRI) of HCFU was 4.09). Moreover, the growth of CRC in tumor-bearing mice was effectively suppressed, with tumor suppression rates up to 94.74%, and a combination index (CI) value of less than one (CI = 0.41 for CT26 cell lines), indicating a significant synergistic therapeutic effect. Histological analysis of the tumor micro-vessel density and enzyme-linked immunosorbent assay (ELISA) tests indicated that the system increased TNF-α and IFN-β levels in serum. Therefore, this research introduces a pH-responsive polymer-based theranostic platform with great potential for immune-chemotherapeutic and anti-vascular combination therapy of CRC.

Keywords: Chemotherapy; Colorectal carcinoma; STING pathway; Synergistic therapy; Vascular disrupting agent.