Crucial roles of soil inherent Fe-bearing minerals in enhanced Cr(VI) reduction by biochar: The electronegativity neutralization and electron transfer mediation

Environ Pollut. 2024 Apr 18:350:124014. doi: 10.1016/j.envpol.2024.124014. Online ahead of print.

Abstract

Biochar has been used for soil Cr(VI) remediation in the last decade due to its enriched redox functional groups and good electrochemical properties. However, the role of soil inherent Fe-bearing minerals during the reduction of Cr(VI) has been largely overlooked. In this study, biochar with different electron-donating capacities (EDCs) was produced at 400 °C (BC400) and 700 °C (BC700), and their performance for Cr(VI) reduction in soils with varied properties (e.g., Fe content) was investigated. The addition of BC400 caused around 14.2-36.0 mg g-1 Cr(VI) reduction after two weeks of incubation in red soil, paddy soil, loess soil, and fluvo-aquic soil, while a less Cr(VI) was reduced by BC700 (2.57-16.7 mg g-1) with smaller EDCs. The Cr(VI) reduction by both biochars in different soils was closely related to Fe content (R2 = 0.93-0.98), so red soil with the richest Fe (14.8% > 1.79-3.49%) showed the best reduction capability, and the removal of soil free Fe oxides (e.g., hematite) resulted in 71.9% decrease of Cr(VI) reduction by BC400. On one hand, Fe-bearing minerals could increase the soil acidity, neutralize the surface negative charge of biochar, enhance the contact between Cr(VI) and biochar, and thus facilitate the direct Cr(VI) reduction by biochar in soils. On the other hand, Fe-bearing minerals could also facilitate the indirect Cr(VI) reduction by mediating the electron from biochar to Cr(VI) with the cyclic transformation of Fe(II)/Fe(III). This study demonstrates the key role of soil Fe-bearing minerals in Cr(VI) reduction by biochar, which advances our understanding on the biochar-based remediation mechanism of Cr(VI)-contaminated soils.

Keywords: Biochar; Electron transfer; Electronegativity; Fe-bearing minerals; Soil Cr(VI) reduction.