Exploring the cause of reduced production responses to feeding corn dried distillers' grains in lactating dairy cows

J Dairy Sci. 2024 Apr 18:S0022-0302(24)00752-5. doi: 10.3168/jds.2023-24356. Online ahead of print.

Abstract

An experiment was conducted to identify the factors that cause reduced production of cows fed a diet with high corn distiller's grains with solubles (DDGS). We hypothesized that the factors could be high S content in DDGS which may directly (S toxicity) or indirectly [dietary cation-anion difference (DCAD)] cause reduced production. We also hypothesized that high polyunsaturated fatty acids (PUFA) in DDGS could be another major factor. In a randomized complete block design, 60 lactating cows (15 primiparous and 45 multiparious; average ± SD at the beginning of the trial: milk yield, 44.0 ± 6.9 kg/d; DIM, 123 ± 50; BW, 672 ± 82 kg) were blocked and cows in each block were randomly assigned to one of the following treatments: SBM [4.7% fatty acids (FA), 0.22% S, and 178 mEq/kg DM of DCAD], a diet containing soybean meal as the main protein source; DG, SBM replacing mainly soybean byproducts and supplemental fat with DG at 30% dietary DM (4.7% FA, 0.44% S, and 42 mEq/kg DM of DCAD); SBM+S, SBM with sodium bisulfate for additional dietary S (4.8% FA, 0.37% S, and 198 mEq/kg DM of DCAD); SBM+CO, SBM with corn oil (4.7% FA, 0.23%, and 165 mEq/kg DM of DCAD); and DG+DCAD, DG with increased DCAD (4.7% FA, 0.40% S, and 330 mEq/kg DM of DCAD). Due to the limited tie stalls, the blocks of 1 to 6 started the experiment first as phase 1 and the rest of the blocks as phase 2 started the experiment after phase 1. All cows were fed the SBM diet for 10 d as a covariate period followed by the experimental period for 35 d. Data were analyzed using the PROC MIXED of SAS, block and phase were random effects and treatments, repeated wk, and interaction were fixed effects. There was an interaction of wk by treatment for DMI. While milk yield did not change, milk fat concentration tended to decrease (2.78 vs. 3.34%) for DG compared with SBM. Dry matter, OM, NDF, and CP digestibilities were lower when cows were fed the DG diet compared with SBM. Additionally, cows fed DG had lower blood concentrations of HCO3-, base excess, and tCO2 compared with SBM. The SBM+S diet did not affect production, nutrient digestibility, or blood parameters when compared with SBM. The SBM+CO diet decreased milk fat concentration and yield compared with SBM. The DG+DCAD diet tended to increase milk fat yield and concentration (1.24 vs. 1.47 kg/d; 2.78 vs. 3.37%) and increased ECM (40.9 vs. 45.1 kg/d) compared with DG but did not improve nutrient digestibility. However, blood HCO3-, base excess, and tCO2 were greater for DG+DCAD compared with DG. In conclusion, the indirect role of S-, altering DCAD, along with the high PUFA content in DDGS appears to be the factors causing reduced production responses to a high DDGS diet. Increasing DCAD to 300 mEq/kg DM in a high DDGS diet can be a feeding strategy to alleviate the reduced production responses.

Keywords: dietary cation-anion difference; milk fat; polyunsaturated fatty acids; sulfur.