Confirming the statistically significant superiority of tree-based machine learning algorithms over their counterparts for tabular data

PLoS One. 2024 Apr 18;19(4):e0301541. doi: 10.1371/journal.pone.0301541. eCollection 2024.

Abstract

Many individual studies in the literature observed the superiority of tree-based machine learning (ML) algorithms. However, the current body of literature lacks statistical validation of this superiority. This study addresses this gap by employing five ML algorithms on 200 open-access datasets from a wide range of research contexts to statistically confirm the superiority of tree-based ML algorithms over their counterparts. Specifically, it examines two tree-based ML (Decision tree and Random forest) and three non-tree-based ML (Support vector machine, Logistic regression and k-nearest neighbour) algorithms. Results from paired-sample t-tests show that both tree-based ML algorithms reveal better performance than each non-tree-based ML algorithm for the four ML performance measures (accuracy, precision, recall and F1 score) considered in this study, each at p<0.001 significance level. This performance superiority is consistent across both the model development and test phases. This study also used paired-sample t-tests for the subsets of the research datasets from disease prediction (66) and university-ranking (50) research contexts for further validation. The observed superiority of the tree-based ML algorithms remains valid for these subsets. Tree-based ML algorithms significantly outperformed non-tree-based algorithms for these two research contexts for all four performance measures. We discuss the research implications of these findings in detail in this article.

MeSH terms

  • Algorithms*
  • Humans
  • Logistic Models
  • Machine Learning*
  • Support Vector Machine

Grants and funding

The author(s) received no specific funding for this work.