Heat transport in an angular-momentum-conserving lattice

Phys Rev E. 2024 Mar;109(3-1):034118. doi: 10.1103/PhysRevE.109.034118.

Abstract

It is expected that the energy-diffusion propagator in a one-dimensional nonlinear lattice with three conserved quantities: energy, momentum, and stretch, consists of a central heat mode and two sound modes. The heat mode follows a Lévy distribution. Consequently, the heat diffusion is super, i.e., the second moment of the diffusion propagator diverges as t^{β} with β>1; and the heat conduction is anomalous, i.e., the heat conductivity is size dependent and diverges with size N by N^{α}, with α>0. In this paper, we study a one-dimensional lattice with two-dimensional transverse motions, in which the total angular momentum also conserves. More importantly, the diffusion of this conserved quantity is ballistic. Surprisingly, the above pictures and the values of the mentioned power exponents keep unchanged. The universality of the scalings is then further extended. On the other hand, the detailed strengths of heat transports are largely enhanced. Such a counterintuitive finding can be explained by the change of the phonon mean-free path of the lattices.