Lean body mass and the cardiorespiratory phenotype: An ethnic-specific relationship in Hans Chinese women and men

J Cachexia Sarcopenia Muscle. 2024 Apr 17. doi: 10.1002/jcsm.13464. Online ahead of print.

Abstract

Background: Lean body mass (LBM) and the functional capacity of cardiovascular (CV) and respiratory systems constitute a female-specific relationship in European-American individuals. Whether this recent finding be extrapolated to the world's largest ethnic group, that is, Hans Chinese (HC, a population characterized by low LBM), is unknown.

Methods: Healthy HC adults (n = 144, 50% ♀) closely matched by sex, age and physical activity were included. Total and regional (leg, arm and trunk) LBM and body composition were measured via dual-energy X-ray absorptiometry. Cardiac structure, stiffness, central/peripheral haemodynamics and peak O2 consumption (VO2peak) were assessed via transthoracic echocardiography and pulmonary gas analyses at rest and during exercise up to peak effort. Regression analyses determined the sex-specific relationship of LBM with cardiac and aerobic phenotypes.

Results: Total and regional LBM were lower and body fat percentage higher in women compared with men (P < 0.001). In both sexes, total LBM positively associated with left ventricular (LV) mass and peak volumes (r ≥ 0.33, P ≤ 0.005) and negatively with LV end-systolic and central arterial stiffness (r ≥ -0.34, P ≤ 0.004). Total LBM strongly associated with VO2peak (r ≥ 0.60, P < 0.001) and peak cardiac output (r ≥ 0.40, P < 0.001) in women and men. Among regional LBM, leg LBM prominently associated with the arterio-venous O2 difference at peak exercise in both sexes (r ≥ 0.43, P < 0.001). Adjustment by adiposity or CV risk factors did not modify the results.

Conclusions: LBM independently determines internal cardiac dimensions, ventricular mass, distensibility and the capacity to deliver and consume O2 in HC adults irrespective of sex.

Keywords: Aerobic capacity; Body composition; Cardiovascular structure/function; Hans Chinese; Lean body mass; O2 extraction.