Ni-Substituted Sr2FeMoO6-δ as an Electrode Material for Symmetrical and Reversible Solid-Oxide Cells

ACS Appl Mater Interfaces. 2024 May 1;16(17):21790-21798. doi: 10.1021/acsami.4c00509. Epub 2024 Apr 16.

Abstract

This work develops a novel perovskite Sr2FeNi0.35Mo0.65O6-δ (SFN0.35M) simultaneously using as a fuel electrode and oxygen electrode in a reversible solid oxide cell (RSOC). SFN0.35M shows outstanding electrocatalytic activity for hydrogen oxidation, hydrogen evolution, oxygen reduction, and oxygen evolution. In situ exsolution and dissolution of Fe-Ni alloy nanoparticles in SFN0.35M is revealed. In a reducing atmosphere, SFN0.35M shows in situ exsolution of Fe-Ni alloy nanoparticles, and then the Fe-Ni alloy is reoxidized into SFN0.35M while converting into an oxidizing atmosphere. The polarization resistances of SFN0.35M electrode are 0.043 Ω cm2 in 20% O2-N2 and 0.064 Ω cm2 in H2 at 850 °C. Moreover, symmetric fuel cells using the SFN0.35M electrode achieves a maximum power density of 0.501 W cm-2 at 850 °C in H2 fuel, while the symmetric electrolysis cell has an electrolysis current density of 0.794 A cm-2 at 1.29 V in 90% H2O-10% H2 at 850 °C. It is the first time we demonstrate that the cell voltage of symmetrical cell at 0.5 A cm-2 in the fuel cell mode and -0.5 A cm-2 in the electrolysis cell mode can be fully recovered in 10 electrode alternating cycles and therefore demonstrate the possibility that SFN0.35M can be used in a fully symmetric RSOC stack with electrode alternating functions.

Keywords: electrode alternating cycles; perovskite; reversible exsolution and dissolution; reversible solid oxide cell; symmetrical electrodes.