Aminoazanium of A-site Cations in Metal-Free Halide Perovskite Single Crystals to Reduce Thermal Expansion for Efficient X-ray Detection

J Phys Chem Lett. 2024 Apr 25;15(16):4375-4383. doi: 10.1021/acs.jpclett.4c00533. Epub 2024 Apr 15.

Abstract

Metal-free perovskites (MFPs) have recently become a newcomer in X-ray detection due to their flexibility and low toxicity characteristics. However, their photoelectronic properties and stability should be further improved mainly through materials design. Here, the aminoazanium of DABCO2+ was developed for the preparation of NDABCO-NH4Br3 (NDABCO = N-amino-N'-diazabicyclo[2.2.2]octonium) single crystals (SCs), and its physical properties, intermolecular interactions, and device performance were systematically explored. Notably, NDABCO-NH4Br3 can achieve improved stability by enlarging defect formation energy and inducing abundant intermolecular forces. Moreover, the slight lattice distortion could ensure the weakening electron-phonon coupling for improving carrier transport. In particular, the slight lattice distortion after the long-chain NDABCO2+ introduction could retard thermal expansion for the preparation of high-quality crystals. Finally, the corresponding X-ray detector delivered a moderate sensitivity of 623.3 μC Gyair-1 cm-2. This work provides a novel strategy through rationally designed organic cations to balance the material stability and device performance.