Tandem Reactions of Electrophilic Indoles toward Indolizines and Their Subsequent Transformations through Pd(II)-Mediated C-H Functionalization to Access Polyring-Fused N-Heterocycles

ACS Omega. 2024 Mar 30;9(14):16196-16206. doi: 10.1021/acsomega.3c10194. eCollection 2024 Apr 9.

Abstract

A simple and efficient synthetic approach for generating a library of structurally novel indolizines has been developed via sequential 1,3-dipolar cycloaddition-ring opening processes. Using this methodology, a series of indolizines bearing different substituents were made in moderate to good yields. The presence of two functionalizable C-H bonds in these indolizine motifs makes them attractive for accessing fused indolizine scaffolds. In this line, we have introduced palladium-mediated site-selective C-H functionalizations, where the N-center and the two C-H centers of the indolizine moiety can be readily functionalized to generate fused N-heterocycles. Utilizing a Pd-mediated dual C-H activation of 5-benzoyl-substituted indolizine afforded 6H-indeno-indolizine, and a tetracene, viz., indolizino[2,1-b]indoles, was produced in the same substrate by the Pd-catalyzed selective C-H amination in the presence of oxygen.