First Report of powdery mildew of Quercus guyavifolia (Fagaceae) Caused by Erysiphe quercicola

Plant Dis. 2024 Apr 14. doi: 10.1094/PDIS-01-24-0216-PDN. Online ahead of print.

Abstract

Oaks are the most abundant trees in naturally regenerated forests in China, play a crucial role in preventing soil erosion and maintaining ecological stability (Du et al. 2022). Quercus guyavifolia H. Léveillé (Fagaceae family, Subgenus Cerris, section Ilex), is endemic in China, distributed in the southeastern boundary of the Qinghai-Tibet Plateau, with elevations from 2, 000 - 4, 500 m a.s.l. (Denk et al. 2018; Sun et al. 2016). Powdery mildew is a prevalent disease of oaks with up to 60% of foliage infection, which can induce leaf necrosis or deformation and might contribute to oak decline (Marçais and Desprez-Loustau 2014). In September 2023, we found leaves of Q. guyavifolia near Yunnan Baima Snow Mountain covered with white fungal colonies. Diseased Q. guyavifolia plants were transplanted into a greenhouse at Yunnan University for pathogenicity tests. Conidia from diseased plants were blown into twenty healthy Q. guyavifolia seedlings by cold air blower and five non-inoculated healthy seedlings were used as control. The inoculated seedlings developed powdery mildew symptoms within ten days on both sides of the leaves. Trypan blue staining was used to identify the pathogen that infects Q. guyavifolia (Xiao et al. 2017). Microscopic examination revealed abundant conidia and extensive branched hyphae on leaves, similar to the characteristics of powdery mildew fungi. The mean length and width of conidia were 29.06 ± 3.96 × 9.52 ± 1.36 μm (n = 50). We collected fungi (YNBAIMAXS01) and extracted genomic DNA from five diseased plants (from the same location) using the CTAB method. We amplified and sequenced the ITS (Gardes and Bruns, 1993), MS294, and MS447 (two nuclear protein-encoding genes; Feau et al. 2011; GenBank numbers: PP079015, PP083693, PP083694). BLAST analysis revealed 100% identity of above three sequences with the ITS of Erysiphe quercicola isolate DACA010 (GenBank accession MT569439), MS294 of E. quercicola isolate GEM09_11_FRTB1 (GenBank accession KY348509), and MS447 of E. quercicola isolate A1I1.5 (GenBank accession KY466619). Therefore, the isolate YNBAIMAXS01 was identified as E. quercicola based on its morphological and molecular characteristics. Sequences from the above three regions for YNBAIMAXS01 and five Erysiphe species were used to construct a Maximum likelihood (ML) tree. In addition, we constructed a ML tree using only the ITS region of YNBAIMAXS01 and eight Erysiphe species from GenBank to better distinguish E. quercicola from these species. Both trees were constructed using MEGA X with K2 + G as best model. The ML trees confirmed the powdery mildew fungi isolated from Q. guyavifolia is closely related to E. alphitoides. To date, thirty-four powdery mildew species belonging to genus Erysiphe have been found affecting Quercus and nine oak species can be infected by E. quercicola (https://fungi.ars.usda.gov/). To our knowledge, this is the first report of powdery mildew caused by E. quercicola on Q. guyavifolia, thus the development of control strategies and disease management is urgently needed.

Keywords: Causal Agent; Crop Type; Fungi; Trees; forest; mycelium; oak.