A Computational Pipeline to Investigate Longitudinal Blood Flow Changes in the Circle of Willis of Patients with Stable and Growing Aneurysms

Ann Biomed Eng. 2024 Apr 14. doi: 10.1007/s10439-024-03493-1. Online ahead of print.

Abstract

Changes in cerebral blood flow are often associated with the initiation and development of different life-threatening medical conditions including aneurysm rupture and ischemic stroke. Nevertheless, it is not fully clear how haemodynamic changes in time across the Circle of Willis (CoW) are related with intracranial aneurysm (IA) growth. In this work, we introduced a novel reduced-order modelling strategy for the systematic quantification of longitudinal blood flow changes across the whole CoW in patients with stable and unstable/growing aneurysm. Magnetic Resonance Angiography (MRA) images were converted into one-dimensional (1-D) vessel networks through a semi-automated procedure, with a level of geometric reconstruction accuracy controlled by user-dependent parameters. The proposed pipeline was used to systematically analyse longitudinal haemodynamic changes in seven different clinical cases. Our preliminary simulation results indicate that growing aneurysms are not necessarily associated with significant changes in mean flow over time. A concise sensitivity analysis also shed light on which modelling aspects need to be further characterized to have reliable patient-specific predictions. This study poses the basis for investigating how time-dependent changes in the vasculature affect the haemodynamics across the whole CoW in patients with stable and growing aneurysms.

Keywords: Aneurysm development; Cerebral vasculature; Circle of Willis; Longitudinal study; One-dimensional blood flow dynamics.