Accurate gamma-ray dose measurement up to 10 MeV by glass dosimeter with a sensitivity control filter for BNCT

Appl Radiat Isot. 2024 Jul:209:111299. doi: 10.1016/j.apradiso.2024.111299. Epub 2024 Mar 22.

Abstract

Glass dosimeters are very useful and convenient detection elements in radiation dosimetry. In this study, this glass dosimeter was applied to a BNCT treatment field. Boron Neutron Capture Therapy (BNCT) is a next-generation radiation therapy that can selectively kill only cancer cells. In the BNCT treatment field, both neutrons and secondary gamma-rays are generated. In other words, it is a mixed radiation field of neutrons and gamma-rays. We thus proposed a novel method to measure only gamma-ray dose in the mixed field using two RPLGD (Radiophoto-luminescence Glass Dosimeter) and two sensitivity control filters in order to control the dose response of the filtered RPLGD to be proportional to the air kerma coefficients, even if the gamma-ray energy spectrum is unknown. As the filter material iron was selected, and it was finally confirmed that reproduction of the air kerma coefficients was excellent within an error of 5.3% in the entire energy range up to 10 MeV. In order to validate this method, irradiation experiments were carried out using standard gamma-ray sources. As the result, the measured doses were in acceptably good agreement with the theoretical calculation results by PHITS. In the irradiation experiment with a volume source in a nuclear fuel storage room, the measured dose rates showed larger compared with survey meter values. In conclusion, the results of the standard sources showed the feasibility of this method, however for the volume source the dependence of the gamma-ray incident angle on the dosimeter was found to be not neglected. In the next step, it will be necessary to design a thinner filter in order to suppress the effect of the incident angle.

Keywords: Air kerma; Bayesian estimation; Boron neutron capture therapy (BNCT); Dose estimation; Mixed radiation field; RPLGD.