Gottesman-Kitaev-Preskill State Preparation Using Periodic Driving

Phys Rev Lett. 2024 Mar 29;132(13):130605. doi: 10.1103/PhysRevLett.132.130605.

Abstract

The Gottesman-Kitaev-Preskill (GKP) code may be used to overcome noise in continuous variable quantum systems. However, preparing GKP states remains experimentally challenging. We propose a method for preparing GKP states by engineering a time-periodic Hamiltonian whose Floquet states are GKP states. This Hamiltonian may be realized in a superconducting circuit comprising a SQUID shunted by a superinductor and a capacitor, with a characteristic impedance twice the resistance quantum. The GKP Floquet states can be prepared by adiabatically tuning the frequency of the external magnetic flux drive. We predict that highly squeezed >11.9 dB (10.8 dB) GKP magic states can be prepared on a microsecond timescale, given a quality factor of 10^{6} (10^{5}) and flux noise at typical rates.