Optical Temperature-Sensing Performance of La2Ce2O7:Ho3+ Yb3+ Powders

Materials (Basel). 2024 Apr 7;17(7):1692. doi: 10.3390/ma17071692.

Abstract

In this paper, La2Ce2O7 powders co-activated by Ho3+ and Yb3+ were synthesized by a high temperature solid-state reaction. Both Ho3+ and Yb3+ substitute the La3+ sites in the La2Ce2O7 lattice, where the Ho3+ concentration is 0.5 at.% and the Yb3+ concentration varies in the range of 10~18% at.%. Pumped by a 980 nm laser, the up-conversion (UC) green emission peak at 547 nm and the red emission at 661 nm were detected. When the doping concentration of Ho3+ and Yb3+ are 0.5 at.% and 14% at.%, respectively, the UC emission reaches the strongest intensity. The temperature-sensing performance of La2Ce2O7:Ho3+ with Yb3+ was studied in the temperature range of 303-483 K, where the highest relative sensitivity (Sr) is 0.0129 K-1 at 483 K. The results show that the powder La2Ce2O7:Ho3+, Yb3+ can be a potential candidate for remote temperature sensors.

Keywords: energy transfer; optical temperature sensing; pyrochlore structure; up-conversion emission.