Novel Umami Peptides from Mushroom (Agaricus bisporus) and Their Umami Enhancing Effect via Virtual Screening and Molecular Simulation

J Agric Food Chem. 2024 Apr 12. doi: 10.1021/acs.jafc.3c04608. Online ahead of print.

Abstract

This study aimed to identify novel umami peptides in Agaricus bisporus and investigate their umami enhancing effect. We virtually screened 155 potential umami peptides from the ultrasound-assisted A. bisporus hydrolysate according to Q values, iUmami-SCM, Umami_YYDS, and Tastepeptides_DM models, and molecular docking. Five peptides (AGKNTNGSQF, DEAVARGATF, REESDFQSSF, SEETTTGVHH, and WNNDAFQSSTN) were synthesized for sensory evaluation and kinetic analysis. The result showed that the umami thresholds of the five peptides were in the range of 0.21-0.40 mmol/L. Notably, REESDFQSSF, SEETTTGVHH, and WNNDAFQSSTN had low dissociation constant (KD) values and high affinity for the T1R1-VFT receptor. The enhancing effect of the three peptides with MSG or IMP was investigated by sensory evaluation, kinetic analysis, and molecular dynamics simulations. In stable complexes, ARG_277 in T1R1 played a major role in umami peptide binding to T1R1-VFT. These results provide a theoretical basis for future screening of umami peptides and improving the umami taste of food containing mushrooms.

Keywords: Agaricus bisporus; molecular dynamics simulation; umami enhancing effect; umami peptide.