Cost-Effectiveness of Cardiovascular Magnetic Resonance for Rejection Surveillance After Cardiac Transplantation in the Australian Health Care System

Heart Lung Circ. 2024 Apr 10:S1443-9506(24)00164-1. doi: 10.1016/j.hlc.2024.03.004. Online ahead of print.

Abstract

Background: Heart transplantation is an effective treatment for end-stage congestive heart failure, however, achieving the right balance of immunosuppression to maintain graft function while minimising adverse effects is challenging. Serial endomyocardial biopsies (EMBs) are currently the standard for rejection surveillance, despite being invasive. Replacing EMB-based surveillance with cardiac magnetic resonance (CMR)-based surveillance for acute cardiac allograft rejection has shown feasibility. This study aimed to assess the cost-effectiveness of CMR-based surveillance in the first year after heart transplantation.

Method: A prospective clinical trial was conducted with 40 orthotopic heart transplant (OHT) recipients. Participants were randomly allocated into two surveillance groups: EMB-based, and CMR-based. The trial included economic evaluations, comparing the frequency and cost of surveillance modalities in relation to quality-adjusted life years (QALYs) within the first year post-transplantation. Sensitivity analysis encompassed modelled data from observed EMB and CMR arms, integrating two hypothetical models of expedited CMR-based surveillance.

Results: In the CMR cohort, 238 CMR scans and 15 EMBs were conducted, versus (vs) 235 EMBs in the EMB group. CMR surveillance yielded comparable rejection rates (CMR 74 vs EMB 94 events, p=0.10) and did not increase hospitalisation risk (CMR 32 vs EMB 46 events, p=0.031). It significantly reduced the necessity for invasive EMBs by 94%, lowered costs by an average of AUD$32,878.61, and enhanced cumulative QALY by 0.588 compared with EMB. Sensitivity analysis showed that increased surveillance with expedited CMR Models 1 and 2 were more cost-effective than EMB (all p<0.01), with CMR Model 1 achieving the greatest cost savings (AUD$34,091.12±AUD$23,271.86 less) and utility increase (+0.62±1.49 QALYs, p=0.011), signifying an optimal cost-utility ratio. Model 2 showed comparable utility to the base CMR model (p=0.900) while offering the benefit of heightened surveillance frequency during periods of elevated rejection risk.

Conclusions: CMR-based rejection surveillance in orthotopic heart transplant recipients provides a cost-effective alternative to EMB-based surveillance. Furthermore, it reduces the need for invasive procedures, without increased risk of rejection or hospitalisation for patients, and can be incorporated economically for expedited surveillance. These findings have important implications for improving patient care and optimising resource allocation in post-transplant management.

Keywords: Economics; Heart transplantation; Magnetic resonance imaging; Rejection; Surveillance.