Novel combinatorial autophagy inhibition therapy for triple negative breast cancers

Eur J Pharmacol. 2024 Jun 15:973:176568. doi: 10.1016/j.ejphar.2024.176568. Epub 2024 Apr 9.

Abstract

Background: Triple negative breast cancer (TNBC) has the worst prognosis among breast cancer subtypes. It is characterized by lack of estrogen, progesterone and human epidermal growth factor 2 receptors, and thus, have limited therapeutic options. Autophagy has been found to be correlated with poor prognosis and aggressive behaviour in TNBC. This study aimed to target autophagy in TNBC via a novel approach to inhibit TNBC progression.

Methods: Immunoblotting and confocal microscopy were carried out to examine the effect of tumor microenvironmental stressors on autophagy. Cellular proliferation and migration assays were used to test the effect of different autophagy inhibitors and standard chemotherapy alone or in combination. In vivo xenograft mouse model was utilized to assess the effect of autophagy inhibitors alone or in combination with Paclitaxel. High resolution mass spectrometry based proteomic analysis was performed to explore the mechanisms behind chemoresistance in TNBC. Lastly, immunohistochemistry was done to assess the correlation between autophagy related proteins and clinical characteristics in TNBC tissue specimens.

Results: Metabolic stressors were found to induce autophagy in TNBC cell lines. Autophagy initiation inhibitors, SAR405 and MRT68921, showed marked synergy in their anti-proliferative activity in both chemosensitive and chemoresistant TNBC cell models. Paradoxically, positive expression of autophagosome marker LC3 was shown to be associated with better overall survival of TNBC patients.

Conclusion: In this study, a novel combination between different autophagy inhibitors was identified which inhibited tumor cell proliferation in both chemosensitive and chemoresistant TNBC cells and could result in development of a novel treatment modality against TNBC.

Keywords: Autophagy; Autophagy inhibitors; Chemoresistance; Triple negative breast cancer.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Antineoplastic Combined Chemotherapy Protocols / pharmacology
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use
  • Autophagy* / drug effects
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Proliferation* / drug effects
  • Drug Resistance, Neoplasm / drug effects
  • Female
  • Humans
  • Mice
  • Paclitaxel / pharmacology
  • Paclitaxel / therapeutic use
  • Triple Negative Breast Neoplasms* / drug therapy
  • Triple Negative Breast Neoplasms* / metabolism
  • Triple Negative Breast Neoplasms* / pathology
  • Xenograft Model Antitumor Assays

Substances

  • Paclitaxel
  • Antineoplastic Agents