An environmentally relevant mixture of Perfluoroalkyl Substances (PFAS) impacts proliferation, steroid hormone synthesis, and gene transcription in primary human granulosa cells

Toxicol Sci. 2024 Apr 11:kfae049. doi: 10.1093/toxsci/kfae049. Online ahead of print.

Abstract

Perfluoroalkyl substances (PFAS) are a group of synthetic chemicals that are resistant to biodegradation and are environmentally persistent. PFAS are found in many consumer products and are a major source of water and soil contamination. This study investigated the effects of an environmentally relevant PFAS mixture [perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS)] on the transcriptome and function of human granulosa cells (hGCs). Primary hGCs were harvested from follicular aspirates of healthy, reproductive-age women who were undergoing oocyte retrieval for in vitro fertilization. LC/MS-MS was performed to identify PFAS compounds in pure follicular fluid. Cells were cultured with vehicle control or a PFAS mixture (2 nM PFHxS, 7 nM PFOA, 10 nM PFOS) for 96h. Analyses of cell proliferation/apoptosis, steroidogenesis, and gene expression were measured via MTT assays/immunofluorescence, ELISA/western blotting, and RNA sequencing/bioinformatics, respectively. PFOA, PFOS, and PFHxS were detected in 100% of follicle fluid samples. Increased cell proliferation was observed in hGCs treated with the PFAS mixture with no impacts on cellular apoptosis. The PFAS mixture also altered steroid hormone synthesis, increasing both FSH-stimulated and basal progesterone secretion and concomitant upregulation of STAR protein. RNA sequencing revealed inherent differences in transcriptomic profiles in hGCs after PFAS exposure. This study demonstrates functional and transcriptomic changes in hGCs after exposure to a PFAS mixture, improving our knowledge about the impacts of PFAS exposures and female reproductive health. These findings suggest that PFAS compounds can disrupt normal granulosa cell function with possible long-term consequences on overall reproductive health.

Keywords: PFAS; granulosa cells; mixtures; steroidogenesis; transcriptome.