Isomer-resolved unimolecular dynamics of the hydroperoxyalkyl intermediate (•QOOH) in cyclohexane oxidation

Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2401148121. doi: 10.1073/pnas.2401148121. Epub 2024 Apr 11.

Abstract

The oxidation of cycloalkanes is important in the combustion of transportation fuels and in atmospheric secondary organic aerosol formation. A transient carbon-centered radical intermediate (•QOOH) in the oxidation of cyclohexane is identified through its infrared fingerprint and time- and energy-resolved unimolecular dissociation dynamics to hydroxyl (OH) radical and bicyclic ether products. Although the cyclohexyl ring structure leads to three nearly degenerate •QOOH isomers (β-, γ-, and δ-QOOH), their transition state (TS) barriers to OH products are predicted to differ considerably. Selective characterization of the β-QOOH isomer is achieved at excitation energies associated with the lowest TS barrier, resulting in rapid unimolecular decay to OH products that are detected. A benchmarking approach is employed for the calculation of high-accuracy stationary point energies, in particular TS barriers, for cyclohexane oxidation (C6H11O2), building on higher-level reference calculations for the smaller ethane oxidation (C2H5O2) system. The isomer-specific characterization of β-QOOH is validated by comparison of experimental OH product appearance rates with computed statistical microcanonical rates, including significant heavy-atom tunneling, at energies in the vicinity of the TS barrier. Master-equation modeling is utilized to extend the results to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclohexane combustion.

Keywords: combustion and atmospheric chemistry; cyclohexane oxidation; hydroperoxyalkyl intermediate; transition state barriers; unimolecular decay.