The Effect of Granulocyte Colony-Stimulating Factor on Endometrial Receptivity of Implantation Failure Mouse

Reprod Sci. 2024 Apr 10. doi: 10.1007/s43032-024-01527-6. Online ahead of print.

Abstract

The purpose of this study was to investigate the effect of G-CSF on the endometrial receptivity of implantation failure mice. Sixty female mice were treated mifepristone to establish an implant failure model. The treatment groups received different doses of G-CSF. Endometrial tissue and serum were collected on day 5 after mating. The abundance of pinopodes on the endometrium was observed by scanning electron microscopy. The expressions of LPAR3, COX2, and HOXA10 were detected by RT-qPCR and Western blotting. Serum levels of E2, P, VEGF, LIF, TNF-α and IL-10 were measured by ELISA. The expressions of VEGF, CD34, CD57, TNF-α, and IL-10 were assessed by immunohistochemistry. Immunofluorescence analysis was performed to determine the number of CD57, Treg, and Th17 cells. G-CSF increased implantation and pregnancy rates of mifepristone-induced implantation failure mice, with the most significant effect seen at the intermediate dose. G-CSF increased the serum levels of E2 and P, the abundance of endometrial pinopodes, and the level of LIF in the endometrium. It also promoted the expression of VEGF, HOXA10, LPAR3, and COX2. Moreover, G-CSF reduced the level of CD57 cells and the ratio of Th17/Treg cells in endometrium. G-CSF reduced the inflammatory factor TNF-α, but IL-10 did not change significantly. G-CSF can enhance embryo implantation rate and pregnancy rate and improve endometrial receptivity by attenuating degeneration of pinopodes, upregulating estrogen and progesterone, facilitating angiogenesis, maintaining immune cell homeostasis, and reducing the production of inflammatory cytokines in implantation failure mouse.

Keywords: Embryo implantation; Endometrial receptivity; Estrogen; Granulocyte colony-stimulating factor; Immune tolerance; Progesterone.