ATML1 Regulates the Differentiation of ER Body-containing Large Pavement Cells in Rosette Leaves of Brassicaceae Plants

Plant Cell Physiol. 2024 Apr 8:pcae039. doi: 10.1093/pcp/pcae039. Online ahead of print.

Abstract

Endoplasmic reticulum (ER)-derived organelles, ER bodies, participate in the defense against herbivores in Brassicaceae plants. ER bodies accumulate β-glucosidases, which hydrolyse specialized thioglucosides known as glucosinolates to generate bioactive substances. In Arabidopsis thaliana, the leaf ER (LER) bodies are formed in large pavement cells, which are found in the petioles, margins, and blades of rosette leaves. However, the regulatory mechanisms involved in establishing large pavement cells are unknown. Here, we show that the ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) transcription factor regulates the formation of LER bodies in large pavement cells of rosette leaves. Overexpression of ATML1 enhanced the expression of LER body-related genes and the number of LER body-containing large pavement cells, whereas its knockout resulted in opposite effects. ATML1 enhances endoreduplication and cell size through LOSS OF GIANT CELLS FROM ORGANS (LGO). Although the overexpression and knockout of LGO affected the appearance of large pavement cells in Arabidopsis, the effect on LER body-related gene expression and LER body formation was weak. LER body-containing large pavement cells were also found in Eutrema salsugineum, another Brassicaceae species. Our results demonstrate that ATML1 establishes large pavement cells to induce LER body formation in Brassicaceae plants, and thereby possibly contributes to the defense against herbivores.

Keywords: Arabidopsis thaliana; Eutrema salsugineum; ATML1; Endoplasmic reticulum bodies; Leaf development; Pavement cell differentiation.