Gd3+ Encapsulation on 2D-g-C3N4 Nanostructure for Spintronics and Ultrasound Assisted Photocatalytic Applications: First-Principles and Experimental Studies

Small. 2024 Apr 8:e2401670. doi: 10.1002/smll.202401670. Online ahead of print.

Abstract

Atomically thin two-dimensional (2D) semiconductors have high potential in optoelectronics and magneto-optics appliances due to their tunable band structures and physicochemical stability. The work demonstrates that Gd3+ incorporated 2D-g-C3N4 nanosheet (Gd3+/2D-g-C3N4 NS) is synthesized through chemisorption methodology for defect enrichment. The material characterizations reveal that the ion decoration enhances the surface area and defect concentration of the 2D sheet. The experimental observations have been further corroborated with the help of density functional theory (DFT) simulation. Spin asymmetry polarizations near the Fermi level, obtained through the partial density of states (PDOS) analyses, reveal the magnetic nature of the synthesized material, validating the room temperature ferromagnetism obtained through a vibrating-sample magnetometer (VSM). Gd3+/2D-g-C3N4 NS shows significant enhancement in saturation magnetization (Ms) experimentally and computationally compared to the pristine one. The magnetic catalyst shows 98% remediation efficiency for ultrasound-assisted visible-light-driven photodegradation of methyl orange (MO). The synergistic approach of liquid chromatography-mass spectrometry (LC-MS) analyses and DFT studies elucidates reaction intermediates and unveils the degradation mechanism. Post-characterization studies assure the stability of the magnetic catalyst through optical, chemical, magnetic, and microscopic analyses. So, the synthesized material can be proficiently used as a magnetic nanocatalyst in wastewater treatments and spin-electronics applications.

Keywords: Gd3+/2D‐g‐C3N4 NS; US‐photodegradation; catalytic stability; lattice defects; magnetic nanocatalysts; magnetization.