The effect of quorum sensing on cadmium- and lead-containing wastewater treatment using activated sludge: Removal efficiency, enzyme activity, and microbial community

Environ Res. 2024 Apr 4;252(Pt 2):118835. doi: 10.1016/j.envres.2024.118835. Online ahead of print.

Abstract

Quorum sensing (QS) is prevalent in activated sludge processes; however, its essential role in the treatment of heavy metal wastewater has rarely been studied. Therefore, in this study, acyl homoserine lactone (AHL)-mediated QS was used to regulate the removal performance, enzyme activity, and microbial community of Cd- and Pb-containing wastewater in a sequencing batch reactor (SBR) over 30 cycles. The results showed that exogenous AHL strengthened the removal of Cd(II) and Pb(II) in their coexistence wastewater during the entire period. The removal of NH4+-N, total phosphorus, and chemical oxygen demand (COD) was also enhanced by the addition of AHL despite the coexistence of Cd(II) and Pb(II). Meanwhile, the protein content of extracellular polymeric substances was elevated and the microbial metabolism and antioxidative response were stimulated by the addition of AHL, which was beneficial for resistance to heavy metal stress and promoted pollutant removal by activated sludge. Microbial sequencing indicated that AHL optimized the microbial community structure, with the abundance of dominant taxa Proteobacteria and Unclassified_f_Enterobacteriaceae increasing by 73.9% and 59.2% maximally, respectively. This study offers valuable insights into the mechanisms underlying Cd(II) and Pb(II) removal as well as microbial community succession under AHL availability in industrial wastewater.

Keywords: Acyl homoserine lactone (AHL); Cadmium; Lead; Microbial community; Quorum sensing; Wastewater treatment.