Therapeutic inhibition of monocyte recruitment prevents checkpoint inhibitor-induced hepatitis

J Immunother Cancer. 2024 Apr 4;12(4):e008078. doi: 10.1136/jitc-2023-008078.

Abstract

Background: Checkpoint inhibitor-induced hepatitis (CPI-hepatitis) is an emerging problem with the widening use of CPIs in cancer immunotherapy. Here, we developed a mouse model to characterize the mechanism of CPI-hepatitis and to therapeutically target key pathways driving this pathology.

Methods: C57BL/6 wild-type (WT) mice were dosed with toll-like receptor (TLR)9 agonist (TLR9-L) for hepatic priming combined with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) plus anti-programmed cell death 1 (PD-1) ("CPI") or phosphate buffered saline (PBS) control for up to 7 days. Flow cytometry, histology/immunofluorescence and messenger RNA sequencing were used to characterize liver myeloid/lymphoid subsets and inflammation. Hepatocyte damage was assessed by plasma alanine transaminase (ALT) and cytokeratin-18 (CK-18) measurements. In vivo investigations of CPI-hepatitis were carried out in Rag2-/- and Ccr2rfp/rfp transgenic mice, as well as following anti-CD4, anti-CD8 or cenicriviroc (CVC; CCR2/CCR5 antagonist) treatment.

Results: Co-administration of combination CPIs with TLR9-L induced liver pathology closely resembling human disease, with increased infiltration and clustering of granzyme B+perforin+CD8+ T cells and CCR2+ monocytes, 7 days post treatment. This was accompanied by apoptotic hepatocytes surrounding these clusters and elevated ALT and CK-18 plasma levels. Liver RNA sequencing identified key signaling pathways (JAK-STAT, NF-ΚB) and cytokine/chemokine networks (Ifnγ, Cxcl9, Ccl2/Ccr2) as drivers of CPI-hepatitis. Using this model, we show that CD8+ T cells mediate hepatocyte damage in experimental CPI-hepatitis. However, their liver recruitment, clustering, and cytotoxic activity is dependent on the presence of CCR2+ monocytes. The absence of hepatic monocyte recruitment in Ccr2rfp/rfp mice and CCR2 inhibition by CVC treatment in WT mice was able to prevent the development and reverse established experimental CPI-hepatitis.

Conclusion: This newly established mouse model provides a platform for in vivo mechanistic studies of CPI-hepatitis. Using this model, we demonstrate the central role of liver infiltrating CCR2+ monocyte interaction with tissue-destructive CD8+ T cells in the pathogenesis of CPI-hepatitis and highlight CCR2 inhibition as a novel therapeutic target.

Keywords: CD8-Positive T-Lymphocytes; Immune Checkpoint Inhibitors; Immunotherapy; Inflammation.

MeSH terms

  • Animals
  • CD8-Positive T-Lymphocytes
  • Hepatitis* / drug therapy
  • Hepatitis* / etiology
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Monocytes*
  • Toll-Like Receptor 9

Substances

  • Toll-Like Receptor 9