First-principles study of multifunctional Mn2B3 materials with high hardness and ferromagnetism

Phys Chem Chem Phys. 2024 Apr 17;26(15):12009-12015. doi: 10.1039/d3cp04414a.

Abstract

Transition metal boride TM2B3 is widely studied in the field of physics and materials science. However, Mn2B3 has not been found in Mn-B systems so far. Mn2B3 undergoes phase transitions from Cmcm (0-28 GPa) to C2/m (28-80 GPa) and finally to C2/c (80-200 GPa) under pressure. Among these stable phases, Cmcm- and C2/m-Mn2B3s comprise six-membered boron rings and C2/c-Mn2B3 has wavy boron chains. They all have good mechanical properties and can become potential multifunctional materials. The strong B-B covalent bonding is mainly responsible for the structural stability and hardness. Comparison of the hardness of the five TM2B3s with different bonding strengths of TM-B and B-B bonds reveals a nonlinear change in the hardness. According to the Stoner model, these structures possess ferromagnetism, and the corresponding magnetic moments are almost the same as those of GGA and GGA + U (U = 3.9 eV, J = 1 eV).