Integrated ultrasonic-transglutaminase modification of lesser mealworm protein isolate: A pioneering cobalamin delivery vehicle in gluten-free breads

Food Chem. 2024 Aug 1:448:139069. doi: 10.1016/j.foodchem.2024.139069. Epub 2024 Mar 21.

Abstract

A combined approach of microbial transglutaminase (MTGase) crosslinking and high-intensity ultrasound (HIU) was implemented to improve the physicochemical, rheological, structural, and thermal properties, as well as the targeted release of vitamin B12 of lesser mealworm protein isolate (LMPI)-based gels. Prolonging HIU to 60 min significantly reduced LMPIs' size, polydispersity, zeta-potential, and fluorescence intensity while increasing surface hydrophobicity, free amino (FAGs), and sulfhydryl (FSGs) groups. The MTGase-catalyzed LMPI gels effectively decreased the content of FAGs and FSGs. LMPI gels from 60 and 75 min HIU and MTGase catalysis exhibited a shear-thinning flow behavior, superior thermal stability, and improved water retention and gel strength with the most controlled release of vitamin B12 during in vitro simulated gastrointestinal digestion. Incorporating freeze-dried gel powders from 60 min HIU-treated MTGase-catalyzed LMPI and pea protein isolate into the dough of a new gluten-free bread improved physicochemical, textural, and sensory properties, with notable vitamin B12 retention rate.

Keywords: Cyanocobalamin; Enzymatic crosslinking; Gluten-free; Insect protein isolate; Microstructure; Sonication.