Ordering kinetics and steady states of XY-model with ferromagnetic and nematic interaction

J Phys Condens Matter. 2024 Apr 17;36(28). doi: 10.1088/1361-648X/ad3abe.

Abstract

Previous studies on the generalized XY model have concentrated on the equilibrium phase diagram and the equilibrium nature of distinct phases under varying parameter conditions. We direct our attention towards examining the system's evolution towards equilibrium states across different parameter values, specifically by varying the relative strengths of ferromagnetic and nematic interactions. We study the kinetics of the system, using the temporal annihilation of defects at varying temperatures and its impact on the coarsening behavior of the system. For both pure polar and pure nematic systems, we observe temperature-dependent decay of the exponent, leading to a decelerated growth of domains within the system. At parameter values where both ferromagnetic and nematic interactions are simultaneously present, we show a phase diagram highlighting three low-temperature phases-polar, nematic, and coexistence-along- side a high-temperature disordered phase. Our study provides valuable insights into the complex interplay of interactions, offering a comprehensive understanding of the system's behavior during its evolution towards equilibrium.

Keywords: Monte Carlo simulation; defect dynamics; generalized XY model; ordering kinetics; phase transition.