Aneurinibacillus uraniidurans sp. nov., a uranium-resistant bacterium isolated from uranium-contaminated soil

Int J Syst Evol Microbiol. 2024 Apr;74(4). doi: 10.1099/ijsem.0.006297.

Abstract

A novel Gram-positive strain, B1T, was isolated from uranium-contaminated soil. The strain was aerobic, rod-shaped, spore-forming, and motile. The strain was able to grow at 20-45 °C, at pH 6.0-9.0, and in the presence of 0-3 % (w/v) NaCl. The complete genome size of the novel strain was 3 853 322 bp. The genomic DNA G+C content was 45.5 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain B1T has the highest similarity to Aneurinibacillus soli CB4T (96. 71 %). However, the novel strain showed an average nucleotide identity value of 89.02 % and a digital DNA-DNA hybridization value of 37.40 % with strain CB4T based on the genome sequences. The major fatty acids were iso-C15 : 0 and C16 : 0. The predominate respiratory quinone was MK7. Diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, unidentified phospholipids, an unidentified aminolipid and an unidentified lipid were identified as the major polar lipids. The phylogenetic, phenotypic, and chemotaxonomic analyses showed that strain B1T represents a novel species of the genus Aneurinibacillus, for which the name Aneurinibacillus uraniidurans sp. nov. is proposed. The type strain is B1T (=GDMCC 1.4080T=JCM 36228T). Experiments have shown that strain B1T demonstrates uranium tolerance.

Keywords: Aneurinibacillus; uranium tolerance.

MeSH terms

  • Bacteria
  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids* / chemistry
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Soil
  • Uranium*

Substances

  • Fatty Acids
  • RNA, Ribosomal, 16S
  • Uranium
  • DNA, Bacterial
  • Soil