Prototype development and evaluation of a hyperspectral lidar optical receiving system

Opt Express. 2024 Mar 25;32(7):10786-10800. doi: 10.1364/OE.514442.

Abstract

As a new type of active Earth observation technology, airborne hyperspectral lidar combines the advantages of traditional lidar 3D information acquisition and passive hyperspectral imaging technology, and it can achieve integrated imaging detection with a high spatial and hyperspectral resolution. Thus, it has become an important future direction of Earth surface remote sensing technology. This article introduces the design and development of an airborne hyperspectral imaging lidar system. The hyperspectral lidar adopts a focal plane splitting method, combined with an array of 168 optical fibers, to couple wide-spectral-range laser echo signals one by one to the corresponding single tube detector, achieving efficient splitting and precise coupling of supercontinuum laser pulse echo signals. This article proposes a fast synchronous calibration method that is suitable for hyperspectral imaging lidar systems. Results show that the spectral range of the hyperspectral lidar system is 400-900 nm, and the spectral resolution of single-fiber detection is greater than 3 nm. Notably, this article focuses on analyzing the abnormal detection channels based on the calibration results. With the test results of adjacent channels combined, the reason for the abnormal spectral bandwidth of channel 17 is analyzed as an example. This research points out the direction for verifying the design parameters of the hyperspectral lidar prototype and lays an important foundation for airborne flight test of the hyperspectral lidar.