Spatiotemporal assessment of the nexus between urban sprawl and land surface temperature as microclimatic effect: implications for urban planning

Environ Sci Pollut Res Int. 2024 Apr;31(20):29048-29070. doi: 10.1007/s11356-024-33091-6. Epub 2024 Apr 3.

Abstract

Rapid urbanisation has led to significant environmental and climatic changes worldwide, especially in urban heat islands where increased land surface temperature (LST) poses a major challenge to sustainable urban living. In the city of Abha in southwestern Saudi Arabia, a region experiencing rapid urban growth, the impact of such expansion on LST and the resulting microclimatic changes are still poorly understood. This study aims to explore the dynamics of urban sprawl and its direct impact on LST to provide important insights for urban planning and climate change mitigation strategies. Using the random forest (RF) algorithm optimised for land use and land cover (LULC) mapping, LULC models were derived that had an overall accuracy of 87.70%, 86.27% and 93.53% for 1990, 2000 and 2020, respectively. The mono-window algorithm facilitated the derivation of LST, while Markovian transition matrices and spatial linear regression models assessed LULC dynamics and LST trends. Notably, built-up areas grew from 69.40 km2 in 1990 to 338.74 km2 in 2020, while LST in urban areas showed a pronounced warming trend, with temperatures increasing from an average of 43.71 °C in 1990 to 50.46 °C in 2020. Six landscape fragmentation indices were then calculated for urban areas over three decades. The results show that the Largest Patch Index (LPI) increases from 22.78 in 1990 to 65.24 in 2020, and the number of patches (NP) escalates from 2,531 in 1990 to an impressive 10,710 in 2020. Further regression analyses highlighted the morphological changes in the cities and attributed almost 97% of the LST variability to these urban patch dynamics. In addition, water bodies showed a cooling trend with a temperature decrease from 33.76 °C in 2000 to 29.69 °C in 2020, suggesting an anthropogenic influence. The conclusion emphasises the urgent need for sustainable urban planning to counteract the warming trends associated with urban sprawl and promote climate resilience.

Keywords: Land surface temperature; Land use change; Spatial analysis; Sustainable urban planning; Urban growth; Urban heat island.

MeSH terms

  • Cities
  • City Planning*
  • Climate Change*
  • Microclimate*
  • Saudi Arabia
  • Temperature*
  • Urbanization*