Does the Symbiotic Relationship Between Hydra Viridissima and Photoautotrophic Alga Provide an Evolutionary Advantage in Protecting DNA against Damage by the Cytotoxic or Genotoxic Mode of Action of Environmental Stressors?

Bull Environ Contam Toxicol. 2024 Apr 2;112(4):56. doi: 10.1007/s00128-024-03884-z.

Abstract

The aim of this paper was to evaluate whether symbiotic cooperation between green hydra (Hydra viridissima) and photoautotrophic alga gives higher resistance of the preservation of DNA integrity compared to brown hydra (Hydra oligactis). Norflurazon concentrations were 0.061 or 0.61 mg/L and UV-B light 254 nm, 0.023mWcm- 2 applied separately or simultaneously. By alkaline comet assay primary DNA damage was assessed and cytotoxicity by fluorescent staining. Norflurazon at 0.61 mg L- 1 significantly increased DNA damage in brown hydras compared to the control (6.17 ± 0.6 μm, 5.2 ± 1.7% vs. 2.9 ± 0.2 μm, 1.2 ± 0.2%). Cytotoxicity was significantly elevated, being higher in brown hydras (25.7 ± 3.5% vs. 8.2 ± 0.2%). UV-B irradiation induced significant DNA damage in brown hydras (13.5 ± 1.0 μm, 4.1 ± 1.0%). Simultaneous exposure to UV-B and norflurazon led to a synergistic DNA damaging. The frequency of cytotoxicity and hedgehog nucleoids was more pronounced in brown (78.3 ± 9.4%; 56.4 ± 6.0%) than in green hydras (34.7 ± 2.5%; 24.2 ± 0.6%). Evolutionary established symbiotic cooperation proved to provide resistance against cyto/genotoxicity.

Keywords: Cytotoxicity; DNA damage; Ecogenotoxicology; Endosymbiotic alga norflurazon; Hydra; Symbiosis; UV-B light.

MeSH terms

  • Animals
  • DNA
  • DNA Damage
  • Hydra* / genetics
  • Symbiosis

Substances

  • DNA