Essential bioactive competence of laminarin (β-glucan)/ laminaran extracted from Padina tetrastromatica and Sargassum cinereum biomass

Environ Res. 2024 Mar 31;252(Pt 1):118836. doi: 10.1016/j.envres.2024.118836. Online ahead of print.

Abstract

Marine algae-based drug discovery has recently received a lot of attention. This study was conducted to extract laminarin-enriched solvent extracts from Padina tetrastromatica and Sargassum cinereum and to evaluate their anticancer activity against the HeLa cell line in vitro (MTT assay). Furthermore, their toxicity was determined through a zebra fish model study. P. tetrastromatica and S. cinereum biomasses have a higher concentration of essential biomolecules such as carbohydrates, protein, and crude fiber, as well as essential minerals (Na, Mg, K, Ca, and Fe) and secondary metabolites. Methanol extracts, in particular, contain a higher concentration of vital phytochemicals than other solvent extracts. The laminarin quantification assay states that methanol extracts of P. tetrastromatica and S. cinereum are rich in laminarin, which is primarily confirmed by FTIR analysis. In an anticancer study, laminarin-MeE from P. tetrastromatica and S. cinereum at concentrations of 750 and 1000 μg mL-1 demonstrated 100% activity against HeLa cells. The Zebra fish model-based toxicity study revealed that the laminarin-enriched MeE of P. tetrastromatica and S. cinereum is non-toxic. These findings revealed that the laminarin-enriched MeE of P. tetrastromatica and S. cinereum has significant anticancer activity without causing toxicity.

Keywords: Anticancer; Bioactive substance; Laminarin; Padina tetrastromatica; Sargassum cinereum.