An ethologically motivated neurobiology of primate visually-guided reach-to-grasp behavior

Curr Opin Neurobiol. 2024 Apr 1:86:102872. doi: 10.1016/j.conb.2024.102872. Online ahead of print.

Abstract

The precision of primate visually guided reaching likely evolved to meet the many challenges faced by living in arboreal environments, yet much of what we know about the underlying primate brain organization derives from a set of highly constrained experimental paradigms. Here we review the role of vision to guide natural reach-to-grasp movements in marmoset monkey prey capture to illustrate the breadth and diversity of these behaviors in ethological contexts, the fast predictive nature of these movements [1,2], and the advantages of this particular primate model to investigate the underlying neural mechanisms in more naturalistic contexts [3]. In addition to their amenability to freely-moving neural recording methods for investigating the neural basis of dynamic ethological behaviors [4,5], marmosets have a smooth neocortical surface that facilitates imaging and array recordings [6,7] in all areas in the primate fronto-parietal network [8,9]. Together, this model organism offers novel opportunities to study the real-world interplay between primate vision and reach-to-grasp dynamics using ethologically motivated neuroscientific experimental designs.

Publication types

  • Review