SYNGAP1-related developmental and epileptic encephalopathy: Genotypic and phenotypic characteristics and longitudinal insights

Am J Med Genet A. 2024 Apr 2:e63606. doi: 10.1002/ajmg.a.63606. Online ahead of print.

Abstract

The clinical and genetic characteristics of SYNGAP1 mutations in Korean pediatric patients are not well understood. We retrospectively analyzed 13 individuals with SYNGAP1 mutations from a longitudinal aspect. Clinical data, genetic profiles, and electroencephalography (EEG) patterns were examined. Genotypic analyses included gene panels and whole-exome sequencing. All patients exhibited global developmental delay from early infancy, with motor development eventually reaching independent ambulation by 3 years of age. Language developmental delay varied significantly from nonverbal to simple sentences, which plateaued in all patients. Patients with the best language outcomes typically managed 2-3-word sentences, corresponding to a developmental age of 2-3 years. Epilepsy developed in 77% of patients, with onset consistently following developmental delays at a median age of 31 months. Longitudinal EEG data revealed a shift from occipital to frontal epileptiform discharges with age, suggesting a correlation with synaptic maturation. These findings suggest that the critical developmental plateau occurs between the ages of 2 and 5 years and is potentially influenced by epilepsy. By analyzing longitudinal data, our study contributes to a deeper understanding of SYNGAP1-related DEE, provides potential EEG biomarkers, and underlines the importance of early diagnosis and intervention to address this complex disorder.

Keywords: autism spectrum disorder; epilepsy; intellectual disability; neurodevelopmental disorders; synaptic plasticity.