Hydration Structure of 102No2+: A Density Functional Theory-Molecular Dynamics Study

J Phys Chem A. 2024 Apr 11;128(14):2717-2726. doi: 10.1021/acs.jpca.3c08063. Epub 2024 Apr 2.

Abstract

The hydration structure of No2+, the divalent cation of nobelium in water, was investigated by ab initio molecular dynamics (MD) simulations. First, a series of benchmark calculations were performed to validate the density functional theory (DFT) calculation methods for a molecule containing a No atom. The DFT-MD simulation of the hydration structure of No2+ was conducted after the MD method was validated by simulating the hydration structures of Ca2+ and Sr2+, whose behavior was previously reported to be similar to that of No2+. The model cluster containing M2+ (M = Ca, Sr, or No) and 32 water molecules was used for DFT-MD simulation. The results showed that the hydration distance of No2+ was intermediate between those of Ca2+ and Sr2+. This trend in the hydration distance is in good agreement with the elution position trend obtained in a previous radiochemical experiment. The calculated No-O bond lengths in the optimized structure of [No(H2O)8]2+ was 2.59 Å, while the average No-O bond length of [No(H2O)8]2+ in water by DFT-MD was 2.55 Å. This difference implies the importance of dynamic solvent effects, considering the second (and further) coordination sphere in the theoretical calculation of solution chemistry for superheavy elements.