Genetic analysis of cassava brown streak disease root necrosis using image analysis and genome-wide association studies

Front Plant Sci. 2024 Mar 18:15:1360729. doi: 10.3389/fpls.2024.1360729. eCollection 2024.

Abstract

Cassava brown streak disease (CBSD) poses a substantial threat to food security. To address this challenge, we used PlantCV to extract CBSD root necrosis image traits from 320 clones, with an aim of identifying genomic regions through genome-wide association studies (GWAS) and candidate genes. Results revealed strong correlations among certain root necrosis image traits, such as necrotic area fraction and necrotic width fraction, as well as between the convex hull area of root necrosis and the percentage of necrosis. Low correlations were observed between CBSD scores obtained from the 1-5 scoring method and all root necrosis traits. Broad-sense heritability estimates of root necrosis image traits ranged from low to moderate, with the highest estimate of 0.42 observed for the percentage of necrosis, while narrow-sense heritability consistently remained low, ranging from 0.03 to 0.22. Leveraging data from 30,750 SNPs obtained through DArT genotyping, eight SNPs on chromosomes 1, 7, and 11 were identified and associated with both the ellipse eccentricity of root necrosis and the percentage of necrosis through GWAS. Candidate gene analysis in the 172.2kb region on the chromosome 1 revealed 24 potential genes with diverse functions, including ubiquitin-protein ligase, DNA-binding transcription factors, and RNA metabolism protein, among others. Despite our initial expectation that image analysis objectivity would yield better heritability estimates and stronger genomic associations than the 1-5 scoring method, the results were unexpectedly lower. Further research is needed to comprehensively understand the genetic basis of these traits and their relevance to cassava breeding and disease management.

Keywords: PlantCV; cassava brown streak disease (CBSD); genome-wide association studies (GWAS); image analysis; root necrosis.

Grants and funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported by the NEXTGEN Cassava project, through a grant to Cornell University by the Bill & Melinda Gates Foundation (Grant INV-007637 http://www.gatesfoundation.org) and the UK’s Foreign, Commonwealth & Development Office (FCDO).