Conformal Engineering of Both Electrodes Toward High-Performance Flexible Quasi-Solid-State Zn-Ion Micro-Supercapacitors

Adv Sci (Weinh). 2024 Apr 1:e2308021. doi: 10.1002/advs.202308021. Online ahead of print.

Abstract

The severe Zn-dendrite growth and insufficient carbon-based cathode performance are two critical issues that hinder the practical applications of flexible Zn-ion micro-ssupercapacitors (FZCs). Herein, a self-adaptive electrode design concept of the synchronous improvement on both the cathode and anode is proposed to enhance the overall performance of FZCs. Polypyrrole doped with anti-expansion graphene oxide and acrylamide (PPy/GO-AM) on the cathode side can exhibit remarkable electrochemical performance, including decent capacitance and cycling stability, as well as exceptional mechanical properties. Meanwhile, a robust protective polymeric layer containing reduced graphene oxide and polyacrylamide is self-assembled onto the Zn surface (rGO/PAM@Zn) at the anode side, by which the "tip effect" of Zn small protuberance can be effectively alleviated, the Zn-ion distribution homogenized, and dendrite growth restricted. Benefiting from these advantages, the FZCs deliver an excellent specific capacitance of 125 mF cm-2 (125 F cm-3) at 1 mA cm-2, along with a maximum energy density of 44.4 µWh cm-2, and outstanding long-term durability with 90.3% capacitance remained after 5000 cycles. This conformal electrode design strategy is believed to enlighten the practical design of high-performance in-plane flexible Zn-based electrochemical energy storage devices (EESDs) by simultaneously tackling the challenges faced by Zn anodes and capacitance-type cathodes.

Keywords: Zn‐ion micro‐supercapacitors; electrode engineering; energy storage devices; flexibility; patternable electrode.