Greenhouse gases emissions from aquaculture ponds: Different emission patterns and key microbial processes affected by increased nitrogen loading

Sci Total Environ. 2024 May 20:926:172108. doi: 10.1016/j.scitotenv.2024.172108. Epub 2024 Mar 30.

Abstract

Global aquaculture production is expected to rise to meet the growing demand for food worldwide, potentially leading to increased anthropogenic greenhouse gases (GHG) emissions. As the demand for fish protein increases, so will stocking density, feeding amounts, and nitrogen loading in aquaculture ponds. However, the impact of GHG emissions and the underlying microbial processes remain poorly understood. This study investigated the GHG emission characteristics, key microbial processes, and environmental drivers underlying GHG emissions in low and high nitrogen loading aquaculture ponds (LNP and HNP). The N2O flux in HNP (43.1 ± 11.3 μmol m-2 d-1) was significantly higher than in LNP (-11.3 ± 25.1 μmol m-2 d-1), while the dissolved N2O concentration in HNP (52.8 ± 7.1 nmol L-1) was 150 % higher than in LNP (p < 0.01). However, the methane (CH4) and carbon dioxide (CO2) fluxes and concentrations showed no significant differences (p > 0.05). N2O replaced CH4 as the main source of Global Warming Potential in HNP. Pond sediments acted as a sink for N2O but a source for CH4 and CO2. The △N2O/(△N2O + △N2) in HNP (0.015 ± 0.007 %) was 7.7-fold higher than in LNP (0.002 ± 0.001 %) (p < 0.05). The chemical oxygen demand to NO2-N ratio was the most important environmental factor explaining the variability of N2O fluxes. Ammonia-oxidizing bacteria driven nitrification in water was the predominant N2O source, while comammox-driven nitrification and nosZII-driven N2O reduction in water were key processes for reducing N2O emission in LNP but decreased in HNP. The strong CH4 oxidization by Methylocystis and CO2 assimilation by algae resulted in low CH4 emissions and CO2 sink in the aquaculture pond. The Mantel test indicated that HNP increased N2O fluxes mainly through altering functional genes composition in water and sediment. Our findings suggest that there is a significant underestimation of N2O emissions without considering the significantly increased △N2O/(△N2O + △N2) caused by increased nitrogen loading.

Keywords: Comammox; Environmental factor; Methane; Microbial community; Nitrous oxide; nosZ.

MeSH terms

  • Animals
  • Aquaculture / methods
  • Carbon Dioxide / analysis
  • Environmental Monitoring
  • Greenhouse Gases*
  • Methane / analysis
  • Nitrogen
  • Nitrous Oxide / analysis
  • Ponds
  • Soil
  • Water

Substances

  • Greenhouse Gases
  • Carbon Dioxide
  • Nitrogen
  • Water
  • Methane
  • Nitrous Oxide
  • Soil