Oxygen-containing functional groups in Fe3O4@three-dimensional graphene nanocomposites for enhancing H2O2 production and orientation to 1O2 in electro-Fenton

J Hazard Mater. 2024 May 15:470:134162. doi: 10.1016/j.jhazmat.2024.134162. Epub 2024 Mar 29.

Abstract

In electro-Fenton (EF), development of a bifunctional electrocatalyst to realize simultaneous H2O2 generation and activation efficiently for generating reactive species remains a challenge. In particular, a nonradical-mediated EF is more favorable for actual wastewater remediation, and deserves more attention. In this study, three-dimensional graphene loaded with Fe3O4 nanoparticles (Fe3O4@3D-GNs) with abundant oxygen-containing functional groups (OFGs) was synchronously synthesized using a NaCl-template method and served as a cathode to establish a highly efficient and selective EF process for contaminant degradation. The amounts of OFGs can be effectively modulated via the pyrolysis temperature to regulate the 2e- oxygen reduction reaction activity and reactive oxygen species (ROS) production. The optimized Fe3O4@3D-GNs synthesized at 750 °C (Fe3O4@3D-GNs-750) with the highest -C-O-C and -C꞊O group ratios exhibited the maximum H2O2 and 1O2 yields during electrocatalysis, thus showing remarkable versatility for eliminating organic contaminants from surface water bodies. Experiments and theoretical calculations have demonstrated the dominant role of -C-O-C in generating H2O2 and the positive influence of -C꞊O sites on the production of 1O2. Moreover, the surface-bound Fe(II) favors the generation of surface-bound •OH, which steers a more favorable oxidative conversion of H2O2 to 1O2. Fe3O4@3D-GNs were proven to be less pH-dependent, low-energy, stable, and recyclable for practical applications in wastewater purification. This study provides an innovative strategy to engineer active sites to achieve the selective electrocatalysis for eliminating pollution and reveals a novel perspective for 1O2-generation mechanism in the Fenton reaction.

Keywords: Electro-Fenton; Fe(3)O(4)@3D graphene nanocomposites; H(2)O(2) production; Oxygen-containing functional groups; Singlet oxygen.