Relationship between functional connectivity and weight-gain risk of antipsychotics in schizophrenia

Schizophr Res. 2024 May:267:173-181. doi: 10.1016/j.schres.2024.03.033. Epub 2024 Mar 28.

Abstract

Background: The mechanisms by which antipsychotic medications (APs) contribute to obesity in schizophrenia are not well understood. Because AP effects on functional brain connectivity may contribute to weight effects, the current study investigated how AP-associated weight-gain risk relates to functional connectivity in schizophrenia.

Methods: Fifty-five individuals with schizophrenia (final N = 54) were divided into groups based on previously reported AP weight-gain risk (no APs/low risk [N = 19]; moderate risk [N = 17]; high risk [N = 18]). Resting-state functional magnetic resonance imaging (fMRI) was completed after an overnight fast ("fasted") and post-meal ("fed"). Correlations between AP weight-gain risk and functional connectivity were assessed at the whole-brain level and in reward- and eating-related brain regions (anterior insula, caudate, nucleus accumbens).

Results: When fasted, greater AP weight-gain risk was associated with increased connectivity between thalamus and sensorimotor cortex (pFDR = 0.021). When fed, greater AP weight-gain risk was associated with increased connectivity between left caudate and left precentral/postcentral gyri (pFDR = 0.048) and between right caudate and multiple regions, including the left precentral/postcentral gyri (pFDR = 0.001), intracalcarine/precuneal/cuneal cortices (pFDR < 0.001), and fusiform gyrus (pFDR = 0.008). When fed, greater AP weight-gain risk was also associated with decreased connectivity between right anterior insula and ventromedial prefrontal cortex (pFDR = 0.002).

Conclusions: APs with higher weight-gain risk were associated with greater connectivity between reward-related regions and sensorimotor regions when fasted, perhaps relating to motor anticipation for consumption. Higher weight-gain risk APs were also associated with increased connectivity between reward, salience, and visual regions when fed, potentially reflecting greater desire for consumption following satiety.

Keywords: Antipsychotics; Functional connectivity; Obesity; Schizophrenia; Weight-gain; fMRI.

MeSH terms

  • Adult
  • Antipsychotic Agents* / adverse effects
  • Antipsychotic Agents* / pharmacology
  • Brain / diagnostic imaging
  • Brain / drug effects
  • Brain / physiopathology
  • Connectome
  • Female
  • Humans
  • Magnetic Resonance Imaging*
  • Male
  • Middle Aged
  • Neural Pathways / diagnostic imaging
  • Neural Pathways / drug effects
  • Neural Pathways / physiopathology
  • Obesity / chemically induced
  • Obesity / physiopathology
  • Reward
  • Risk
  • Schizophrenia* / diagnostic imaging
  • Schizophrenia* / drug therapy
  • Schizophrenia* / physiopathology
  • Weight Gain* / drug effects
  • Young Adult