Towards personalised anti-microbial and immune approaches to infections in acute care. Can real-time genomic-informed diagnosis of pathogens, and immune-focused therapies improve outcomes for patients? An observational, experimental study protocol

PLoS One. 2024 Mar 29;19(3):e0298425. doi: 10.1371/journal.pone.0298425. eCollection 2024.

Abstract

Introduction: Infection causes a vast burden of disease, with significant mortality, morbidity and costs to health-care systems. However, identifying the pathogen causative infection can be challenging, resulting in high use of broad-spectrum antibiotics, much of which may be inappropriate. Novel metagenomic methods have potential to rapidly identify pathogens, however their clinical utility for many infections is currently unclear. Outcome from infection is also impacted by the effectiveness of immune responses, which can be impaired by age, co-morbidity and the infection itself. The aims of this study are twofold: To compare diversity of organisms identified and time-to-result using metagenomic methods versus traditional culture -based techniques, to explore the potential clinical role of metagenomic approaches to pathogen identification in a range of infections.To characterise the ex vivo function of immune cells from patients with acute infection, exploring host and pathogen-specific factors which may affect immune function and overall outcomes.

Methods: This is a prospective observational study of patients with acute infection. Patients with symptoms suggestive of an acute infection will be recruited, and blood and bodily fluid relevant to the site of infection collected (for example, sputum and naso-oropharyngeal swabs for respiratory tract infections, or urine for a suspected urinary tract infection). Metagenomic analysis of samples will be compared to traditional microbiology, alongside the antimicrobials received. Blood and respiratory samples such as bronchoalveolar lavage will be used to isolate immune cells and interrogate immune cell function. Where possible, similar samples will be collected from matched participants without a suspected infection to determine the impact of infection on both microbiome and immune cell function.

MeSH terms

  • Anti-Bacterial Agents* / therapeutic use
  • Bronchoalveolar Lavage
  • Humans
  • Metagenomics
  • Observational Studies as Topic
  • Research Design
  • Respiratory Tract Infections* / diagnosis

Substances

  • Anti-Bacterial Agents

Grants and funding

This study is funded by the National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre (BRC). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. It is also supported by PIONEER, the Health Data Research UK (HDR-UK) Health Data Research Hub in acute care. HDR-UK is an initiative funded by the UK Research and Innovation, Department of Health and Social Care (England) and the devolved administrations, and leading medical research charities. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.