Hybridized nanozymes for anti-osteosarcoma therapy via the Fenton reaction

iScience. 2024 Mar 11;27(4):109474. doi: 10.1016/j.isci.2024.109474. eCollection 2024 Apr 19.

Abstract

Abnormal accumulation of hydrogen peroxide (H2O2) in the tumor microenvironment is associated with altered metabolism, abnormal proliferation of tumor cells, and changes in the tumor microenvironment. Based on this phenomenon, we have developed manganese-doped zeolitic imidazolate frameworks (Mn-ZIF) nanozymes, which exhibit superior peroxidase (POD)-like activity and enhanced cytotoxicity. Inside the tumor, the H2O2 is catalyzed by Mn-ZIF nanozymes through the Fenton reaction to generate more potent hydroxyl radicals (·OH), further increasing the local reactive oxygen species (ROS) levels in tumor cells and inducing tumor cell death. Meanwhile, the removal of H2O2 in the tumor microenvironment reduces tumor proliferation. We have confirmed the anti-tumor effect of these particles in an in situ osteosarcoma (OS) model, providing a direction for the future design of hybrid nanozyme drug delivery systems.

Keywords: Biomedical materials; Materials chemistry.