Methylene Blue in a High-Performance Hydrogen-Organic Rechargeable Fuel Cell

ACS Appl Energy Mater. 2024 Mar 6;7(6):2080-2087. doi: 10.1021/acsaem.3c02515. eCollection 2024 Mar 25.

Abstract

A hydrogen-organic hybrid flow battery (FB) has been developed using methylene blue (MB) in an aqueous acid electrolyte with a theoretical positive electrolyte energy storage capacity of 65.4 A h L-1. MB paired with the versatile H2/H+ redox couple at the negative electrode forms the H2-MB rechargeable fuel cell, with no loss in capacity (5 sig. figures) over 30 100% discharge cycles of galvanostatic cycling at 50 mA cm-2, which shows excellent stability. A peak power density of 238 mW cm-2 has also been demonstrated by utilizing 1.0 M MB electrolyte. This represents a type of scalable electrochemical energy storage system with favorable properties in terms of material cost, stability, crossover management, and energy and power density, overcoming many typical limitations of organic-based redox FBs.