High-precision charge analysis in a catalytic nanoparticle by electron holography

Microscopy (Oxf). 2024 Mar 29:dfae018. doi: 10.1093/jmicro/dfae018. Online ahead of print.

Abstract

The charge state of supported metal catalysts is the key to understanding the elementary processes involved in catalytic reactions. However, high-precision charge analysis of the metal catalysts at the atomic level is experimentally challenging. To address this critical challenge, high-sensitivity electron holography has recently been successfully applied for precisely measuring the elementary charges on individual platinum nanoparticles supported on a titanium dioxide surface. In this review, we introduce the latest advancements of high-precision charge analysis and discuss mechanisms of charge transfer at the metal-support interface. The development of charge measurements is entering a new era, and charge analyses under conditions closer to practical working environments, such as real-time, real-space, and reactive gas environments, are expected to be realized in near future.