Production of Aromatic Hydrocarbons from Co-Hydropyrolysis of Biomass Components and HDPE with Application of Modified HZSM-5 Catalyst

Chem Biodivers. 2024 Mar 28:e202400150. doi: 10.1002/cbdv.202400150. Online ahead of print.

Abstract

Experiments were conducted in this study on the co-hydropyrolysis of three components of biomass (cellulose, hemicellulose, and lignin) and HDPE by using SR-Pd/Trap-HZ-5 as catalyst. To control the variable, we use the same experiment conditions in co-hydropyrolysis: Si/Al ratio of 50, Pd load 1 %, catalyst to reactant ratio of 1 : 10, 1 MPa, 400 °C, reaction time 1 h. Use XRD, TEM, BET, and NH3-TPD to confirm catalyst successful synthesis; use pine sawdust (PW) co-hydropyrolysis with HDPE to analyse catalytic activity; and use GC/MS to characterize the chemical composition of the bio-oil from the co-hydropyrolysis of biomass components and HDPE. The results show that cellulose has a significant synergistic effect with aromatic hydrocarbon production, whose selectivity was 93.3 %; hemicellulose has a synergistic effect; aromatic selectivity can reach 75.1 %; and a negative synergistic effect between lignin and HDPE was shown as the selectivity of aromatic hydrocarbons decreased from 62.1 % to 15.6 %.

Keywords: Aromatic hydrocarbons; Biomass; Catalytic co-hydropyrolysis; HDPE; HZSM-5.